

Geographical-Economical Profits of Solar Energy with Remote Sensing Data

Shifeng Wang and Prof. Dr. Barbara Koch
Department of Remote sensing and
Landscape Information System
University of Freiburg

Outline

- Issues concerning the electricity price
- BEWHERE model
- Advantages of remote sensing data
- Couplings of energy models with remote sensing
- Solar potential with remote sensing data
- Results

Issues concerning the electricity price

BEWHERE Model

• General equilibrium energy model (demand-supply theory)

• Complete competition

• Technology-based model

BEWHERE Model (con.)

Advantages of remote sensing data

- labor-reduced
- quick
- simultaneous

Couplings of renewable energy models with remote sensing

1. Loose coupling

Source: Wang et al. 2009

Couplings of renewable energy models with remote sensing (con.)

• 2.Tight coupling

Source: Wang et al. 2009

Couplings of renewable energy models with remote sensing (con.)

3. Mixed coupling (wang et al. 2009)

takes good use of the merits of both preceding couplings.

• Before running the model, RS spatial operator, such as spatial overlay, are first used to reduce the impossible model result.

Couplings of renewable energy models with remote sensing (con.)

4. Comparison of three couplings

Loose coupling	Tight coupling	Mixed coupling
flexible	Highly efficient	intermediate
Easy to implement and improve	Ensure data consistency	Ensure data consistency

Solar potential with remote sensing data

Equation

$$G_i = 10^3 * I_i * h * A_i$$

- Where G is the geographical solar potential, I is the time-averaged irradiance (W/m^2) , h = 8,760 hours / year. A is the available area (km^2) .
- Available area A
- Land use

Landuse data

Source: ESA Globcover

Cultivated Terrestrial Areas and Managed Lands

Natural and Semi-natural Terrestrial Vegetation - Woody / Trees

Natural and Semi-natural Terrestrial Vegetation - Shrubs

Natural and Semi-natural Terrestrial Vegetation - Herbaceous

Natural and Semi-natural Terrestrial Vegetation

Natural and Semi-natural Terrestrial Vegetation

Artificial Surfaces and Associated Areas

Inland Waterbodies

Permanent Snow and Ice

No Data

Available Area (km^2)

Geographical solar potential (GWh/a)

scenarios

- Scenario 1:
 - theory solar potential is inputted and transportation can be conducted in each two countries.
- Scenario 2:
 - geographical solar potential is inputted and transportation can be conducted in each two countries.
- Scenario 3:
 - theory solar potential is inputted and transportation can be conducted in neighbor countries.
- Scenario 4:
 - geographical solar potential is inputted and transportation can be conducted in neighbor countries.

Scenarios (con.)

- Scenario 5: geographical solar potential is inputted and transportation can be conducted in neighbor countries. There are past installed PV.
- Scenario 6
 random geographical solar potential is inputted and transportation can be conducted in neighbor countries.

Global Earth Observation Benefit Estimation: Now, Next and Emerging

PV Capacity of Scenario 3, 4 and 6 (unit: GW)

PV Capacity of Scenario 5 result (Unit: GW)

Thank you for your attention!

