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Abstract – Land cover maps provide critical input data for 
global models of land use. Urgent questions exist, such as how 
much land is available for the expansion of agriculture to 
combat food insecurity, how high will be competition for land 
between food and bioenergy in the future as well as how much 
land is there available for afforestation projects? These 
questions can only be answered if reliable maps of land cover 
exist.  
 
We put this research in the framework of GEOSS, examine 
how modeling tools can be used for benefit assessment and 
design an assessment framework.  
 
We illustrate the importance of good quality global land cover 
maps by using cropland extend from the currently best global 
maps of land cover namely GLC-2000, MODIS, GlobCover 
and CropLikelyhood as input for the EPIC model (to model 
crop yields) and global economic land use model GLOBIOM. 
We use all of the 4 maps and create a maximum crop extend 
and map. Based on a baseline map and the maximum crop 
extend map e model effects of climate policies (e.g. the 
potentials of substitution of fossil fuels with biofuels).  
 

1. INTRODUCTION 
 
There have been a plethora of research activities which have 
illustrated that currently global land cover datasets differ 
drastically in terms of the spatial extend of cropland distributions 
(Fritz and See 2008; Giri et al. 2005; McCallum et al. 2006). One 
of the data layers which differs the most is cropland area. 
Ramankutty et al. estimate  that at the 90% confidence range the 
cropland area is between 1.22 and 1.71 billion hectares which 
translates to a 40% difference (Ramankutty et al. 2008). An 
accurate quantification of cropland area on a global level is  
difficult for mainly 2 reasons (i) because of the very similar 
behavior of seasonal vegetations indices (such as NDVI) of 
rainfed croplands and natural vegetation and (ii) due to very small 
scale heterogeneous cropland patterns which are below the sensor 
resolution of global datasets. 
 
However, it is this cropland land cover class which is among the 
global land cover classes – besides forests- one of the most 
important global layers for land use and land use change 
modeling. For example, accurate estimates of cropland areas are 
essential to understand as to what extent under the current 
environmental and economic constraints expansion of cropland 
area into other potentially productive land is possible in order to 
combat food insecurity or to identify areas of additional land for 
biofuel crops. 

Moreover, there have been questions as how reliable the FAO 
figures are, in particular with respect to crop area (EU 
representative Malawi, 2009, personal communication). 
 
We evaluate here how models which are designed to help in policy 
design can be used to quantify the differences in implementation 
costs. By examining the differences in implementation costs we 
are able to quantify the benefit, hence avoiding the costs of the 
wrong decision.  
 
This study, as part of the EC funded GEOBENE project, aims to 
assess the benefits of improvements in earth observation with 
respect to GEOSS. One way to undertake a benefit assessment is 
by using a suite of models. In this assessment we make use of the 
EPIC model and the GLOBIOM model (see section 3.) A similar 
methodology on the use of EPIC and a partial equilibrium  
agricultural sector model has been described on the value of 
improved long-range weather information (Richard M. Adams 
1995). Details of the proposed assessment framework are outlined 
in the next section.  
 

2.  ASSESSMENT FRAMEWORK 
 

A conceptual framework has been developed  which outlines how 
a benefit assessment of GEOSS can be carried out and provides a 
checklist of the minimum requirements for such an assessment. A 
Non-GEOSS scenario is based on activities which would happen 
anyway and a GEOSS scenario is a scenario which clearly links 
regional, national and global EO products. A GEOSS scenario 
could be seen as having higher resolution as currently only 
available for certain countries or regions (e.g. EU-27) available on 
a global level.  
  
Models, and thus the policy advice they can give, are only as good 
as their input data. We therefore examine the variability of model 
results with respect to different input data for a benefit assessment. 
In this context we illustrate how and to what degree biophysical 
process models and economic land-use models can be used to 
undertake benefit assessments and to better understand the 
importance of data collection. We focus mainly here on land cover 
datasets, but the general assessment framework can be applied to 
any Earth Observation (EO) or in-situ datasets. 
 
We examine outputs of the EPIC and GLOBIOM model based on 
different quality input datasets. By injecting different types of 
input data (land cover in our case) into the models we are able to 
quantify the differences in model output. Figure 1 illustrates the 
differences with respect to data quality and the different levels 
when a sequence of GEOSS implementation levels is considered. 
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Figure 1: Levels of EO data and associated benefits differentiated 
towards GEOSS which can be modeled with a global land use 
model such as GLOBIOM 
 
1) Model implementation 1 takes the official FAO statistics  and 
spreads production   statistics equally over the country  
 
2) Model implementation 2 uses FAO statistics and downscales 
FAO outputs using the EPIC model based on the concept of 
Homogeneous Response Units (HRU) (see 3. Material and 
Methods) 
 
3) Model implementation 3 uses multiple global input datasets and 
allows the quantification of uncertainty with respect to model 
outputs. 
 
4) Model implementation 4 uses (additionally to model 
implementation 3) data which is collected on a regional level (e.g. 
EU-27). Such a model implementation allows a GEOSS versus a 
Non-GEOSS scenario to be examined. It allows to draw certain 
conclusions on the additional accuracy gain when outputs from 
EU-27 runs versus Global data runs are compared. 
 
5) Model implementation 5 uses (additionally to model 
implementation 4) local very fine resolution datasets for e.g. one 
country. It allows more insight into the overall behavior of the 
costs-benefit ratio and understanding of the point at which the 
incremental benefit of further investment in data collection on a 
higher resolution and higher quality data is negligible. 
 
 
By running the model for all the different data inputs we are able 
to understand the overall difference it makes in the model outputs 
of economic and land use parameters such as land requirements 
for biofuels, crop prices, intensification and irrigation of cropland. 
By undertaking such a data input sensitivity analysis it is possible 
to better understand those datasets which are most important, 
hence we could give recommendation on data collection needs as 
well as recommendations for prioritizing global data collection 
needs for land cover, land use, infrastructure and socio-economic 
variables and recommendations on the necessary resolution on 
which data should become available under GEOSS for land use 
modeling activities. In this context the questions arise as what are 
the likely costs of making the wrong decision. We envisage to also 
consider in the future the actual costs of gathering this data and 
therefore to get a full picture of the cost-benefit relationship of 
certain data collection activities. 
 
We can assess the cost of mitigating GHG emissions through 
substitution of transport oil fuels by biofuels according to different 

energy pathways as we can examine what the difference would be 
in terms of a number of other parameters like crop prices with 
their direct impact on food security, irrigation water consumption 
as indicator of the necessary agricultural intensification, or the 
opportunity cost of avoiding deforestation as an alternative 
mitigation policy. This type of quantifiable measures can give an 
interesting insight into costs of the wrong climate policy design. In 
the following assessment we will focus on the third level of 
implementation where we can estimate the magnitude of 
uncertainty with respect to climate policy scenarios.  
 

3 MATERIAL AND METHODS 
 
As outlined in the paper we examine the response of the 
GLOBIOM model with respect to different global cropland input 
layers. However, other layers such as world protected areas, road 
networks together with an accessibility surface can be added in 
future analysis. 
 

                   3.1 Datasets 
1.1 GLC2000 
The first land cover map used in this study is the GLC- 2000, a 
global product for the baseline year 2000. Based on the 1km (appr. 
at the equator) this data set was created via a bottom-up approach 
in collaboration with partners around the world using the 
VEGETATION sensor on board of SPOT 4 (Bartholome´ & 
Belward, 2005). 
1.2 MODIS 
The MODIS land cover product from Boston University 
(MOD12Q1 V004) was created using the Moderate Resolution 
Imaging Spectoradiometer instrument on the NASA Terra 
Platform using data from the period mid-October 2000 to mid-
October 2001. 
1.3 GlobCover 
The objective of the GlobCover / ESA initiative is to develop a 
service to produce a global land-cover map for the year 2005-
2006, using the fine resolution (300 m) mode data acquired over 
the full year 2005 by the MERIS sensor on-board the ENVISAT 
satellite 
1.4 Cropl Likelihood Layer 
The crop likelyhood layer is based on MODIS data and derived in 
a similar way as the Vegetation Continuous field products  
(Hansen, personal communication), . 
 

        3.2 Agreement scoring 
 
In order to examine the variation in cropland extent of global land 
cover products we have undertaken an agreement scoring analysis. 
We define a number of thresholds taking into account minimum 
and maximum cropland extent in each cropland pixel of each 
global cropland layer. We then show in 28 different levels the 
degree of cropland agreement (see Figure 2).  
 



 
 
Figure 2: Levels of disagreement between 4 different cropland 
layers from GLC-2000, MODIS, GlobCover and CropLikelyhood. 
 
In order to show the impact of variation in cropland extent on 
outcomes of global economic models with respect to mitigation 
policy advice, we use the GLC-2000 dataset as a basis as for this 
dataset currently the model has been set up. This cropland area is 
termed Average Cropland Area (ACA). We also refer to this as the 
baseline scenario. We then create a new cropland map using a 
threshold where at least one of the dataset records cropland (either 
MODIS, GLC-2000, Globcover or if the CropLikelihood layer 
shows over 50% of cropland being present). The resulting global 
cropland extent map shows an overall cropland expansion of 26.9 
percent with respect to GLC-2000 – still a conservative difference 
compared to  Ramankutty (2008), (Ramankutty et al. 2008). This 
cropland layer is termed Maximum Cropland Area (MCA). 
 

3.3 Scenario Analysis 
 

 3.3.1 The EPIC Model 
The bio-phyiscal process model EPIC (Environmental Policy 
Integrated Climate;) has been used in this analysis. EPIC is able to 
simulate dynamic changes (50 – 100 years) of bio-physical 
indicators in agro-ecosystems, like biomass production, soil 
organic matter accumulation, soil erosion, greenhouse gasses 
emission and sequestration in order to bring an accurate view on 
global agro-ecosystems, and provides bio-physical data for 
alternative land use and management strategies. The major 
components in EPIC are weather simulation, hydrology, erosion-
sedimentation, nutrient and carbon cycling, pesticide fate, plant 
growth and competition, soil temperature and moisture, tillage, 
cost accounting, and plant environment control. EPIC can be used 
to compare management systems and their effects on crop yields, 
on water, nitrogen, phosphorus, pesticides, organic carbon, and 
sediment transport, on organic carbon sequestration, and 
eventually on green house gas emissions. Like for any biophysical 
process model, the quality and completeness of input data is of 
substantial importance. 
 
The simulation outputs are based on globally delineated 
Simulation Units (Skalsky et al. 2008), defined as intersection of 
Homogenous Response Units (HRU) - altitude, slope and soil 
texture, 30 arcmin grid and country boundaries. Simulation 
UnitsThe integration of the HRU layer with further data (weather, 
land use, crop management, political boundary layers, etc.) leads 
to individual simulation units (Skalsky et al. 2008). These define 
the spatial interface between EPIC and GLOBIOM model 
 
 

3.3.2  The GLOBIOM model 

The Global Biomass Optimization Model (GLOBIOM) is a global 
recursive dynamic partial equilibrium model integrating the 
agricultural, bioenergy and forestry sectors with the aim to provide 
policy analysis on global issues concerning land use competition 
between the major land-based production sectors. The general 
concept and structure of GLOBIOM is similar to the US 
Agricultural Sector and Mitigation of Greenhouse Gas 
(ASMGHG) model. The global agricultural and forest market 
equilibrium is computed by choosing land use and processing 
activities to maximize the sum of producer and consumer surplus 
subject to resource, technological, and policy constraints, as 
described by (McCarl and Spreen 1980). Prices and international 
trade flows are endogenously determined for respective 
aggregated world regions. The flexible model structure enables 
one to easily change the model resolution; in this analysis the 
model is run on 28 regions. 
 
The market is represented by implicit product supply functions 
based on detailed, geographically explicit, Leontief production 
functions, using EPIC simulations, and explicit, constant 
elasticity, product demand functions. Explicit resource supply 
functions are used only for water supply.  
 
In our model the initial cropland area impacts on two other major 
parameters – crop yields and initial areas of the other land cover 
types. Crop yields are obtained from distributing the crop 
production as reported in FAOSTAT over the spatially distributed 
crop areas from Liu and Wood (2000) differentiated by EPIC. If 
the cropland area, and thus the areas under different crops 
increase, the yields are decreased proportionally to maintain the 
same level of FAO reported production. Similarly, as cropland 
area expands, other land cover types have to shrink, and these 
areas are thus no longer available for additional cropland 
expansion due to future pressures. Two scenarios are presented 
here defined as “Average Cropland Area” (ACA) corresponding to 
(You and Wood 2006) and thus to FAOSTAT, and “Maximum 
Cropland Area” (MCA) scenario, defining as cropland also areas 
which are at least represented by one satellite product (see section 
3.2) 
 

4. RESULTS 
 
Scenarios where run from 2005 to 2020 of biofuel consumption as 
projected by the World Economic Outloook (WEO) in 2008 (IEA, 
2008). Very preliminary results for a few interesting parameters 
are presented and compared in Table 1. These results are presented 
in the form of indexes comparing the values corresponding to 
100% of the WEO (2008) projected biofuel consumption with the 
0% biofuel consumption corresponding to the 2005 “base year” 
biofuel consumption.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Index 

Baseline 
Average 
Cropland 
Area 
(ACA) 

Maximum 
Cropland Area 
(MCA) 

Impact 
Percentage 
difference 
between 
ACA and 
MCA 

Crop Price 1.04 1.06 50% 
Ethanol Price 1.80 1.99 19% 
Irrigation Water 
Use 1.02 1.04 

100% 

Opportunity 
Cost of 
Avoiding 
Deforestation 1.07 1.08 

12.5% 

Table 1: Percent difference in terms of Crop prices, Ethanol Price, 
Irrigation Water use and Opportunity Costs Avoiding 
Deforestation depending on the availability of land (ACA or 
MCA)  
 
Generally, we can say that increased biofuel production (here only 
first generation biofuels are considered as available by 2020) leads 
to increases in crop and biofuel prices, irrigation water 
consumption and also in the opportunity cost of avoiding 
deforestation (these scenarios are run so that deforestation is not 
allowed – therefore we can calculate opportunity costs) and thus in 
the cost of potential programs aiming at Reducing Emissions from 
Deforestation and Degradation (REDD). The most pronounced 
impact of biofuel expansion is on the biofuel prices for which the 
absolute percentage differences are highest (index is 1.80 for ACA 
versus 1.99 for MCA. The impact on the other parameters is rather 
low but still can differ substantially between the scenarios, where 
for instance the increase in the irrigation water consumption is 
under the MCA scenario twice as high as under the ACA scenario. 
Also the difference in the indexes with respect to the opportunity 
cost of avoiding deforestation is low, however the absolute 
difference in the opportunity cost of avoiding deforestation 
expressed in USD per tCO2eq is about 50% (5.7 and 8.4 USD per 
t CO2eq for the ACA scenario and MCA scenario, respectively).   
 
 
Conclusions 
This example combining several greenhouse gas mitigation 
options and considering the data uncertainty illustrates the 
importance of gathering better quality land cover data for climate 
policy making. Not only that some mitigation programs may 
become more expensive in reality than what was calculated on the 
basis of inaccurate data, but this inaccuracy may also lead to 
wrong choices in support of different mitigation policies where 
just on the basis of inaccurate calculations e.g. more political 
support will go to biofuels rather than to REDD - although the real 
cost efficient solution may be REDD. 
 
So far we have only considered the implementation stage 3 of the 
different GEOSS implementation levels. In follow up work we are 
going to examine the next level of the GEOSS implementation, 
comparing EU-27 input data with global input data. 
 
Further work will also focus on calculating not only the marginal 
costs but also on the total cost of potential GHG mitigation 
programs including the uncertainty considerations in order to 
provide policy makers also with absolute values of the additional 
value of information which can be derived from more accurate 
data. Moreover, we have not yet considered the costs of the 

different linking the current observing systems and how much the 
additional costs are of acquiring more accurate and higher 
resolution data on a global level. 
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